
DDMA FY ’06 V&V Progress and Results 
Data Driven Modeling and Analysis Team 
 
The following DDMA work was wholly or in part funded by V&V Basic Research 
FY ’06  funding.  The focus is on work done in the later part of the year.  Work 
done earlier in the year was discussed in our Q1 FY ’06 report (DDMA Q1 
Research Summary. doc , enclosed). Note that in FY ’06 F&F funding for 
radiography and metrics was combined. 
 

• TITANS support for 4 DDMA team members 
• Image and Data Analyzer (IDA) infrastructure development 
• Radiographic Reconstruction 

o Deblurring 
o P < 1 Regularization 
o Compressed Sampling 
o Algorithm Improvements 

• Image Pre-processing 
o Lobe finding techniques 
o Segmentation techniques 
o Boundary Parameterization Techniques 

 Trigpoly development 
 Bill’s Boundary Finder 

• Image Metrics 
o Investigations of Metric Stability 
o Exploration of a broad range of metrics 
o In depth investigation of 3 classes of measures/metrics: 

 Warping methods 
 Level Set Methods 
 Whole Image Measures 

• Evaluating Measures and Metrics 
o Visualization 
o Correlation 
o Least Squares Methods 

 
The team this year was comprised of 7 LANL Staff members, 4 LANL post-docs, 
5 students and more than 13 funded and unfunded collaborators from institutions 
across the country.  The work described includes contribution from all of these 
people.  The team members are listed in team.pdf. 
 

1 TITANS 
The motivation for the work with metrics and radiography is to improve our 
understanding of the physics models in the ASC codes.  In FY ’06 DDMA 
supported 4 team members to attend TITANS, part of this money came from 
V&V Basic research. Our objective in attending TITANS is to better integrate our 



work with the objectives of the designers.  Matt Sottile is a full participant in 
TITANS, Bryan Rasmussen, Katharine Chartrand and Rick Chartrand audit.  
 

2 Image and Data Analyzer (IDA) 
IDA is a repository for the algorithms produced by the team.  It facilitates transfer 
of the capabilities we develop within the team and to our clients.  It is also an 
environment for data analysis.  Key elements of IDA include: 

• Scripting language  
• Sourceforge distribution 
• Bug-tracking 
• Coding standards 
• Database for results 
• GUI interface   
 

The IDA infrastructure development this year touched on all of the above 
elements.  We completed, improved and debugged: 

a. a database structure to manage intermediate and final results 
b. a branching data processing pipeline to support analysis sequences that 

are more complex than basic linear structures. 
c. a scripting method for defining and recording the pipeline for a particular 

data set (the .ida configuration file) 
d. programming standards/formats to allow new algorithms to be integrated 

into IDA easily and seamlessly 
e. the integration of IDA into the SourceForge project management structure 

including bug tracking 
f. documentation 
g. a GUI interface 

 
For access to IDA on Sourceforge, contact Matt Sottile (matt@lanl.gov). 

2.1 Supporting Documentation 
The following documents and files provide additional information about this year’s 
IDA development and are included with this report. 
 
IDATopTen.doc 
Every now and then we ask ourselves why we are developing IDA.  This 
document lays out our objectives for the project . 
 
IDA Path Forward.pdf 
This is an in-depth discussion of where IDA development stands and key areas 
for improvement, ranked by importance and difficulty.  This documentation is the 
basis for our collaboration with the University of Oregon.  They have agreed to 
help us with IDA development in exchange for the use of the code for their own 
projects.  This document covers near-term focus areas where IDA requires 
improvement on existing code, along with long-term research topics that will push 



IDA ahead and address features that are not currently present in tools for image 
and data analysis. 
 
Ida-0.8.2 
A directory containing most recent IDA release.  The documents sub-directory 
contains the current IDA documentation.  The stable_code directory contains the 
individual algorithms.  The algorithms are documented in the headers of the 
code. 
 

3 Radiographic Reconstruction 
DDMA’s TV Abel radiographic reconstruction algorithms are state-of-the-art and 
fast and available upon request to LANL staff.  Contact Rick Chartrand 
(rickc@lanl.gov). 

3.1 Better Reconstructions 

3.1.1 Shape-based reconstruction 
Many LANL simulations are judged by their ability to predict shapes.  However, 
the experimental reconstructions to which they are compared are not produced in 
a shape-faithful manner. Both reconstruction methods in use, the BIE and 
DDMA's TVAbel, penalize certain aspects of image shapes.  In the case of the 
BIE, the penalization is implicit and difficult to describe or rectify.  In the case of 
TVAbel, it is simply that total variation penalizes the perimeter of shapes.   
 
Our research this year put us in a position to improve the TV Abel algorithms and 
generate experimental reconstructions that preserve shapes accurately.  A 
modification of total variation will penalize only higher-dimensional (fractal) shape 
characteristics, and not perimeter, while still suppressing noise.  This can make 
the V&V process meaningful in a manner it has not been before. This comes at a 
cost of presenting a more challenging optimization problem, but the issues are 
manageable, making shape-based reconstruction a near-term capability. 

3.1.2 Accurate noise modeling 
Standard regularization methods in the literature are often best suited for 
additive, Gaussian noise.  Our team completed work this year on adapting 
existing models to better handle the types of noise more commonly found in 
experiments.  The two primary examples are signal-dependent (Poisson) noise 
and impulse noise.  Ongoing work is needed to fully implement these new 
models into our computational framework and apply them to relevant problems. 
 
One example of this type of work is our research on a class of duality-based 
algorithms for total-variation regularization with general data fidelity.   Total-
variation regularization involves a non-differentiable penalty term, which makes 
implementations numerically difficult.  Conventional approaches use an 



approximation to TV, which degrades some of the characteristics of TV that make 
it useful (such as preserving jump discontinuities).   
 
A duality-based algorithm of A. Chambolle allows the exact-TV reconstruction to 
be computed.  However, this has only been done for a mean-squared-error data 
fidelity term.  This is only the best choice if the noise is additive Gaussian.  
Previous work identified a data-fidelity term that gives better results for Poisson 
noise.  Furthermore, the Chambolle algorithm does not allow the incorporation of 
an operator for the purpose of inversion, such as deblurring or Abel inversion.   
 
We have remedied this by generalizing the Chambolle algorithm for a very 
general class of data fidelity terms.  We have also proved that the algorithm 
converges for a sufficiently small timestep.  Our convexity-based approach will 
allow for further generalization. 
 
Many LANL data exhibit Poisson noise, making MSE data fidelity terms 
suboptimal.  Complicated, discontinuous structures are best recaptured with true 
TV regularization, rather than the approximation of conventional approaches. 

3.1.3 Reducing artifacts of the algorithms in reconstructions 
Graduated Adaptive Image Denoising is an improvement to the TV Abel 
reconstruction method that reduces artifacts caused by the algorithms. This 
method introduces variants of the variational image denoising method proposed 
by Blomgren, Mulet, Chan, and Wong, which interpolate between total-variation 
denoising and isotropic diffusion denoising. We have investigated how parameter 
choices affect results and allow tuning between TV denoising and isotropic 
diffusion for respecting texture on one spatial scale while denoising features 
assumed to be noise on finer spatial scales. Furthermore, we proved existence 
and (where appropriate) uniqueness of minimizers. We considered both L2 and 
L1 data fidelity terms.  

3.2 Making the Most of the Data We Have 

3.2.1 Using dynamics information 
The use of dynamics information to enhance tomography has been studied in 
simple contexts by our team.  We can reconstruct two-dimensional objects from 
one-dimensional multiple-time projections given the parameterized dynamics that 
connect the objects at the various points in time.  This work was performed on 
several illustrative basic problems and has been accepted for publication.  This 
work needs to be extended to include complex 2d object descriptions, realistic 
radiographic projections, and more detailed physical models of the dynamics. 

3.2.2 Severely underdetermined inversions of 3D information 
This year a visit by Emmanual Candes precipitated extensive research within the 
DDMA team in an area known as “compressed sensing.” Compressed sensing 



provides the capability to obtain high-quality reconstructions from far less data 
than previously thought possible.  Our research in this area has reduced still 
further the amount of data necessary.  A few of the many potential applications 
are as follows: 

• 3-D reconstructions from few (even two) radiographs: The methods of 
compressed sensing provide a way to dispense with the cylindrical 
symmetry assumption required by Abel inversion, while still needing far 
fewer projections than traditional 3-D inversion methods.  Combined with 
an assumption that an object is nearly symmetric, these methods may 
enable 3-D reconstructions from dual-angle radiographs.  By combining 
these techniques with the inclusion of dynamics information, we can make 
optimal use of the dual-angle and multiple-time radiographs envisioned 
from DARHT. 

• 3-D corrections to single, asymmetric radiographs: The compressed-
sensing approach can allow the symmetry assumptions required by Abel 
inversion to be relaxed.  This will permit better reconstructions from single 
radiographs exhibiting 3-D effects.  Similarly, these methods provide the 
flexibility to ignore artifacts or portions of bad data, without requiring 
sometimes clumsy preprocessing. 

3.3 Deblurring 
Deblurring is the process of inverting the convolution that creates image blur.  
Inverting the convolution operator naively can amplify noise to the point of 
uselessness, so we regularize the process by constraining the result to belong to 
a particular class of (noiseless) images.  This year we investigated the 
application of two regularizations to classified problems for Alan Mathews: 

3.3.1 Total variation (TV) 
Requiring the image to have a finite TV eliminates noise, but, crucially, does not 
smear edges.  It does, however, eliminate small-scale features, particular edges 
with long length but containing little area (such as tendrils). 

3.3.2 Poisson singular integral 
This uses a two-parameter family of Besov-type spaces that are larger than the 
space of functions of total-variation.  This weakening of the regularization will 
permit the recovery of small-scale features not retained by TV. 

3.4 Faster Reconstructions, Better Analysis 
The DDMA Image and Data Analyzer (IDA) is an environment for data analysis 
that automates many processes needed to perform accurate radiographic 
inversions.  The algorithms within the package incorporate state-of-the-art 
techniques, in some cases before they appear in the literature.  These tools are 
available to the lab community on Sourceforge, either as a part of IDA or 
separately for inclusion in other contexts.   
 



While highly effective, TV regularization is very computationally expensive. This 
expense grows with the complexity of the inverse problem being regularized, 
significantly restricting the size of problem that can be solved in cases such as 
fan-beam and tilted-beam radiography. Efficient algorithms are critical in making 
this approach feasible for such data sets. 
 
Our current algorithms work on the order of seconds to hours, depending on the 
problem.  This year we improved the speed of some of our algorithms to allow us 
to perform parameter studies more efficiently. This is a step toward improving our 
ability to repeat inversions over many perturbations of parameter choices to 
quantify the uncertainty associated with the algorithms.  We are well poised to 
develop faster methods; one of our post-docs, Paul Rodriguez had the world's 
fastest FFT implementation at one time. 

3.5 Supporting Documentation 
The following documents provide additional information about this progress in 
radiography and are included with this report. 
 
TV Primer.pdf 
Background on our TV Abel regularization research written for DDMA students.   
 
Reconstruction of sparse signals.pdf 
Chartrand, Rick.  “Exact reconstruction of sparse signals via non-convex 
minimization.” – Submitted. 
 
Nonconvex compressed sensing.pdf 
Chartrand, Rick. “Nonconvex compressed sensing and error correction.” – 
submitted. 
 
Nonconvexreg-slides.pdf 
Slides on the research in the above two papers 
 
Schultz-2005-graduated.pdf 
Peter F. Schultz, Erik M. Bollt, Rick Chartrand, Selim Esedoğlu and Kevin R. 
Vixie, "Graduated adaptive image denoising: local compromise between total 
variation and isotropic diffusion", Submitted., 2005 
 
This paper discusses methods we have developed to reduce artifacts of the 
algorithm in TV Abel reconstructions 
 
Le-2005-variational.pdf 
Triet Le, Rick Chartrand and Thomas J. Asaki, "A variational approach to 
reconstructing images corrupted by Poisson noise ", Submitted., 2005 
 
A denoising technique we applied to problems posed to us by Alan Mathews. 
 



Carasso.pdf 
A deblurring technique we investigated this year that does an exceptional job of 
recovering detail. 
 

4 Image Pre-processing for Measures and Metrics 
Many methods for quantifying a characteristic of an image as a measure require 
pre-processing the image to extract features and shapes of interest.  This is a 
critical but not glamorous area of work where we made a lot of progress this 
year.  In particular, we have developed methods to examine the effect of 
preprocessing on the robustness, stability, and uncertainty that is induced by 
algorithmic decisions on the end measure or metric.  We are actively pursuing 
methods that we have identified as rigorous, defensible ways to derive such 
quantitative uncertainties that result from pre-processing methods. 

4.1 Lobe Finding Techniques 
If one is investigating shapes that resemble butterflies, one might be interested in 
the number, order and characteristics of the lobes corresponding to wings and 
antennae.  The problem here is finding a reliable technique.  Once lobes have 
been clipped from the central body they can be analyzed with a number of very 
useful simple measures.  We developed two approaches to clip the lobes off a 
shape.   
 
The first  method uses the inverse of the convex hull computed on an “inside-out” 
transformation of the whole shape. 
 
In the second method, the boundary is parameterized as a trigonometric 
polynomial (Fourier-like description) using the IDA function trigpoly and spectral 
features of the shape are used for lobe clipping.  The low-frequency boundary 
approximation (by low-pass filter) defines a boundary of either a maximal spatial 
frequency or fractional cumulative power.  By cataloging the crossings of this 
curve and the original boundary, the lobes are easily discriminated.  
Segmentation of the shape into lobes and body is then performed. Protruding 
lobes of simply-connected 2-d regions can be quickly identified and segmented in 
this way. 

4.2 Segmentation 
We investigated several segmentation methods this year for stability and 
capabilities.  In particular, we made a thorough study of k-means and the 
hierarchical application of this method to identify features in complex images.  
This technique was very successful on jets data provided by Bernie Wilde.  We 
have also implemented a segmentation technique that has recently appeared in 
medical imaging literature that, unlike common methods such as k-means, can 
be tuned to balance spatial relationships between pixels with global intensity 
distributions.  This method, spatial fuzzy c-means, performs very well in the 



presence of noise without requiring denoising before segmentation.  We have 
extended this algorithm to use an isotropic spatial weighting window that was not 
present in the published method.   
 
This method is of particular interest for use in our ongoing and future work, as it 
is able to preserve features without distortion more accurately than some 
methods based on a combined preprocessing-before-segmentation process. 
Example images, both physics-based and photographic, are shown in the 
attached wildemay.pdf progress report for the Jets project. 

4.3 Boundary Parameterization 

4.3.1 Trigpoly 
In many image analysis tasks it is beneficial to represent a region by its 
boundary.  A good boundary description should be as independent as possible 
from any pixelized representation since pixelization is entirely an artifact of a 
detection or discretization process rather than of inherent object properties.  The 
routine trigpoly represents a binary image by the trigonometric polynomial 
coefficients needed to adequately reproduce the boundary.  Low pass filtering on 
the coefficients produces boundary representations that are smooth relative to 
pixel-size features.  Trigpoly is currently the workhorse of our boundary 
parameterization techniques. 
 
In the course of our work this year, we identified and addressed some 
undesirable features in this algorithm.  First, disconnected regions were not well 
handled.  Trigpoly was able to identify multiple regions, but no global description 
was available.  Second, trigpoly could not evaluate images with pixel-description 
boundaries that were not unique.  This can occur when objects have a lot of 
pixel-size detail or when a simple boundary is corrupted by noise.  These two 
problems have been addressed.  Trigpoly can now return individual boundary 
descriptions or a description based on an artificially connected global region.  
Trigpoly also now can modify binary images to remove all ambiguities in the 
boundary path.  
 
It is quite possible that other boundary parameterization methods will suffer from 
similar problems when a shape derived from an image contains multiple 
disconnected regions.  For a single image, one can provide some relationship 
between the regions (such as artificial bridges between regions), but this 
relationship does not necessarily translate to other images.  Furthermore, no 
boundary parameterization currently in use takes advantage of the dynamics in 
the source process that is represented in the images should they be related by 
time.  A simple example of this would be a time series of images of a fluid droplet 
separating into three separate drops.  Current methods may choose to connect 
them in a manner that varies (detrimentally to a metric) over time. 



4.3.2 Boundary Approximation by Triangulation 
We developed an alternative boundary approximation method that uses 
geometric principles to find a boundary.  The details of this method are included 
in boundarybytriang.pdf, attached.  This method will allow us to avoid spurious 
oscillations that may appear for some images in a shape boundary due to the 
trigonometric polynomial parameterization. 

4.3.3 Supporting Documentation 
Boundarybytriang.pdf 
A discussion of Bill Allard’s boundary finding technique. 
 
Wildemay.pdf 
A slide show which summarizes our investigation into segmentation techniques.   
Slides 11-17 show the comparison of k-means, fuzzy c-means, and spatial fuzzy 
c-means.  Slide 18 compares a smoothing operation before k-means (left image) 
with the output of spatial fuzzy c-means to illustrate the potential extreme effect 
of preprocessing on subsequent segmentation. 
 

5 Measures and Metrics 
5.1 A hundred measures (at least) 
We investigated and applied very large number of simple measures to relevant 
problems and then evaluated them by eye or by correlation with other relevant 
characteristics of a model.  These include: 

1. Area. 
2. Perimeter. 
3. Volume of rotation. 
4. Surface of rotation. 
5. Isoperimetric ratios. 
6. n-th moments (i.e., (statistical moments) of intensity histograms 
7. Uniformity and entropy of intensity histograms. 
8. Betti numbers. 
9. "Pointwise distance" histograms. (Histogram of distance between all 

perimeter points.) 
10. Eccentricity. 
11. Area of convex hull. 
12. Compactness. 
13. Sharpness. 
14. Number of turns in perimeter. 
15. Integral of absolute value of turns in perimeter. 
16. Statistics on scalar measures taken across all level sets. (Example: Skew 

of Area as a function of threshold.) 
17. Orientation. 



18. Major/minor axis lengths. 
19. Connectivity. 
20. Metrics from templates. 
21. Ratios and combinations of all of the above.  

5.2 Metric Stability 
We investigated the sensitivity of our metrics to algorithmic decisions and found 
in some cases our segmentation and boundary finding techniques were sensitive 
to parameter choices unrelated to the data.  In addition, we were posed a number 
real problems this year where the structure we were evaluating did not have a 
single relevant boundary.  This strongly informed our investigation of new 
metrics.  In particular, we sought metrics and measures that do not depend on 
finding a single boundary, in addition to beginning an investigation into methods 
for quantifying these effects as discussed earlier. 

5.3 Investigating new measures metrics 
This year, we investigated twenty or thirty directions for measures and metrics 
and ultimately focused on three areas with the greatest opportunity for weapons 
applications: warping methods, level set methods and whole image metrics. 

5.3.1 Warping 
A warp is a transformation of one signal or image into another.  The 
transformation is performed on the domain in which the data is embedded (eg: 
1D sample spacings, a 2D image mesh, etc…), with a comparison against a 
second data set based on a domain remapping of the warped image followed by 
a basic norm.  Once a transformation is identified that minimizes this norm, the 
cost of the warp is computed based on the energy or work required to perform 
the transformation itself.  The cost of the warp can be a metric of the difference 
between the two data sets based on the difficulty of turning one into the other in a 
physically motivated way.  Warping can be used to compare two sampled 
signals, two vector-type measures on an image or the images themselves.   
 
Warping methods are gross metrics of the differences between two images. Like 
L2, they don’t extract any particular characteristic in the data.  However, warping 
can tell you the cost of differences in registration, dilation, translation and 
contraction of the shapes that L2 will miss.  In general, warping metrics 
reproduce well what the mind does in measuring gross differences between 
shapes and signals.  Warping; however, is computationally challenging and 
requires considerable investment in programming and testing.  This year we 
looked closely at three types of warping: elastic warping, fluid warping and 
dynamic time warping. 



5.3.1.1  Elastic Warping 
Elastic warping produces a quantitative cost based on the elastic energy of the 
transformation that can be thought of as the amount of work required to turn one 
image into the other using vibration modes of a sheet of rubber.  This method, 
although conceptually attractive, has proven to unusable in practice so far for two 
reasons.  First, determining the transformation (ie, identifying the frequencies and 
amplitudes of the vibration modes) is a difficult optimization problem that is 
computationally intensive.  Second, the vibration modes are a global property of 
the warp that makes it difficult to represent multiple small, local and spatially 
separated warps without resorting to a huge number of frequency components.    
 
This second problem ties in with the first, as small local warps are often 
necessary in practice.  Optimization routines have difficulty identifying them due 
to limited a-priori information about coefficient scale and relevant frequencies to 
focus on.   

5.3.1.2  Fluid Warping 
Fluid warping produces a quantitative cost based on the principles of fluid flow; 
one can use the differences between two images to provide the force that drives 
a flow.  Each time step alternates between computing a new displacement field 
by evolving the fluid using this force, and computing the driving force for the next 
time step based on the difference between the warped image and the image 
being compared to.   The computational cost of these methods is related to the 
method employed to solve the fluid dynamics equations for each step in evolving 
the flow.   
 
Fluid warping has been used with great success in the medical imaging field for 
image registration purposes, and overcomes many of the difficulties that were 
encountered in our investigation of elastic warping. We have been able to 
develop this method to the point where we can begin to test it on relevant data 
and the results are very promising.  We are also exploring how we can take 
advantage of the special nature of this particular fluid flow problem to relax 
requirements on the solver technique employed to decrease the computational 
overhead for performing a single warp.   

5.3.1.3  Dynamic Time Warping 
Dynamic time warping is an algorithm that finds an optimal match between two 
sequences independent of non-linear variations in the data.  It originates from 
speech processing and word recognition in sampled audio signals.  For example, 
if one were comparing data from speech patterns, the algorithm would detect 
similarities despite accelerations and decelerations in word utterances over the 
course of the measurement.  This addresses critical problems with L2 methods 
including trouble with dilation or contraction of a signal and signals of different 
lengths. In addition, we extended the algorithm to introduce other constraints that 



we are interested in and differences in registration of the signal by treating them 
as potentially periodic (circular) should the application area require it. 

5.3.1.4  Conservative Remapping 
Warp methods require a remapping operation to occur during the evolution of the 
warp in order to have data in compatible domains for computing the norm that 
drives the evolution.  We have found that warping methods that use basic  
interpolation schemes for this remapping can suffer from ill effects due to mass 
(or intensity) conservation violations.  We have spent some time testing the 
CORE (Conservative REmapper) software package from T-7 as a potential 
remapping operator for this purpose.  CORE is quite powerful and intended for 
remapping of arbitrary 2 and 3-dimensional meshes.  For performance reasons, 
we are in the process of completing development of a conservative remapper 
that takes advantage of assumptions that can be made about the topology of 
meshes derived from pixelated image data to increase computational 
performance. 

5.3.2 Level Set Methods 
We investigated a large class of measures that consist generally of taking the 
measures discussed in the section 5.1 and evaluating them on a series of super-
level sets to get a characteristic vector for an image.  These vectors are then 
compared using the dynamic time warping technique.  This metric is much more 
stable relative to metrics that depend on the selection of a single level set. We 
have a number of promising results from this investigation.  An example of this 
method using area is shown in the Sept 2006 VV Review.ppt under the title 
Symmetric Rearrangement. 

5.3.3 Whole Image Measures 
A whole image metric is computed on the raw data after minimal preprocessing 
(such as denoising, Abel inversion, etc…). Less preprocessing steps leads to 
fewer opportunities for processing artifacts to induce error or metric uncertainty 
that is not related to the data itself.  No pixels are isolated as relevant (shape) 
versus irrelevant (background) and therefore no need to make a binary decision 
where one is not appropriate. 
 
The whole image measures that we investigated include extending our 
geomeasures techniques to 3 dimensions.  We also investigated graph mean 
curvature.  These results are also in Sept 2006 VV Review.ppt. 
 
Whole image measures are an area that we have just begun investigating;  we 
plan to continue work in this area in the following year. 



5.3.4 Image Measures and Metrics by Characteristic Shape 
This approach finds low-dimensional measure vectors on whole images that 
preserve relevant features and compute metrics on feature vectors.  We use low-
dimensional parameterized shapes to form relevant measure vectors as a 
function of image intensity.  This method discussed furthering CharShape.ppt 

5.4 Supporting Documentation 
The following documents provide additional information about this progress in 
radiography and are included with this report. 
 
CharShape.ppt 
Discusses image measures and metrics by characteristic shape. 
 
Metrics-path forward.pdf 
Discusses the key issues with metrics based on our experience this year and 
outlines our path forward. 
 
Sept 2006 V&V Review 
One approach applied to Bernie Wilde’s Jet’s problem and what we learned. 
 
Warps.ppt 
Why warps are important, how they work, and what we plan to do this year. 
 

6 Evaluating Measures and Metrics 
We currently have a suite of at least 100 simple measures, and on the order of 
10 sophisticated ones.  The question is which ones inform us about the questions 
that matter, and ignore features that do not. 

6.1 Visualization 
One common and effective way to evaluate measures is to sort images by a 
measure or metric and compare how the method ranks the differences between 
images by eye. This remains the best way to “get” what a metric is doing. We 
have considered a number of ways to present results in this way. 

6.2 Correlation 
We have investigated correlate them with other known, important features of the 
model.  Contact Bryan Rasmussen for these results. 

6.3 Least Square Fit to Expert Opinion 
One interesting problem is to design a combined measure that consists of a 
vector of relevant measures.  A useful combined measure uses only metrics that 
matter and weights them appropriately.  We considered the problem of 
developing a compound measure as follows: 



• We want a compound measure which: 
o Is composed of distinct, definable components, and 
o Quantifies the contribution of each component. 

• We want a metric that codifies expert opinion in a systematic way, and 
• We need a process that evaluates which measures are relevant to the 

problem and which are not. 
 
We developed a table of expert opinion on the pairwise differences between a set 
of images.  We then evaluated the pairwise differences between the images with 
200 metrics and used a least squares fit to find the combination of metrics which 
most closely approximated expert opinion. We identified some issues with the 
process, but we believe it is a promising way to both evaluate metrics and 
develop combined metrics.  Results on an unclassified problem are included in 
nonnegleastsquares.pdf. 

6.4 Supporting Documentation 
The following documents provide additional information about this progress in 
radiography and are included with this report. 
 
Nonnegleastsquares.pdf 
An example of the combined metric approach applied to an open problem. 


